30 research outputs found

    Primal dual mixed finite element methods for indefinite advection--diffusion equations

    Get PDF
    We consider primal-dual mixed finite element methods for the advection--diffusion equation. For the primal variable we use standard continuous finite element space and for the flux we use the Raviart-Thomas space. We prove optimal a priori error estimates in the energy- and the L2L^2-norms for the primal variable in the low Peclet regime. In the high Peclet regime we also prove optimal error estimates for the primal variable in the H(div)H(div) norm for smooth solutions. Numerically we observe that the method eliminates the spurious oscillations close to interior layers that pollute the solution of the standard Galerkin method when the local Peclet number is high. This method, however, does produce spurious solutions when outflow boundary layer presents. In the last section we propose two simple strategies to remove such numerical artefacts caused by the outflow boundary layer and validate them numerically.Comment: 25 pages, 6 figures, 5 table

    Improved ZZ A Posteriori Error Estimators for Diffusion Problems: Conforming Linear Elements

    Get PDF
    In \cite{CaZh:09}, we introduced and analyzed an improved Zienkiewicz-Zhu (ZZ) estimator for the conforming linear finite element approximation to elliptic interface problems. The estimator is based on the piecewise "constant" flux recovery in the H(div;Ω)H(div;\Omega) conforming finite element space. This paper extends the results of \cite{CaZh:09} to diffusion problems with full diffusion tensor and to the flux recovery both in piecewise constant and piecewise linear H(div)H(div) space.Comment: arXiv admin note: substantial text overlap with arXiv:1407.437

    Residual-based a posteriori error estimation for immersed finite element methods

    Get PDF
    In this paper we introduce and analyze the residual-based a posteriori error estimation of the partially penalized immersed finite element method for solving elliptic interface problems. The immersed finite element method can be naturally utilized on interface-unfitted meshes. Our a posteriori error estimate is proved to be both reliable and efficient with reliability constant independent of the location of the interface. Numerical results indicate that the efficiency constant is independent of the interface location and that the error estimation is robust with respect to the coefficient contrast

    An a posteriori error estimate of the outer normal derivative using dual weights

    Get PDF
    We derive a residual based a-posteriori error estimate for the outer normal flux of approximations to {the diffusion problem with variable coefficient}. By analyzing the solution of the adjoint problem, we show that error indicators in the bulk may be defined to be of higher order than those close to the boundary, which lead to more economic meshes. The theory is illustrated with some numerical examples.Comment: 27 pages, 13 figures, 3 table

    Best approximation results and essential boundary conditions for novel types of weak adversarial network discretizations for PDEs

    Full text link
    In this paper, we provide a theoretical analysis of the recently introduced weakly adversarial networks (WAN) method, used to approximate partial differential equations in high dimensions. We address the existence and stability of the solution, as well as approximation bounds. More precisely, we prove the existence of discrete solutions, intended in a suitable weak sense, for which we prove a quasi-best approximation estimate similar to Cea's lemma, a result commonly found in finite element methods. We also propose two new stabilized WAN-based formulas that avoid the need for direct normalization. Furthermore, we analyze the method's effectiveness for the Dirichlet boundary problem that employs the implicit representation of the geometry. The key requirement for achieving the best approximation outcome is to ensure that the space for the test network satisfies a specific condition, known as the inf-sup condition, essentially requiring that the test network set is sufficiently large when compared to the trial space. The method's accuracy, however, is only determined by the space of the trial network. We also devise a pseudo-time XNODE neural network class for static PDE problems, yielding significantly faster convergence results than the classical DNN network.Comment: 30 pages, 7 figure

    A mesh-free method using piecewise deep neural network for elliptic interface problems

    Get PDF
    In this paper, we propose a novel mesh-free numerical method for solving the elliptic interface problems based on deep learning. We approximate the solution by the neural networks and, since the solution may change dramatically across the interface, we employ different neural networks for each sub-domain. By reformulating the interface problem as a least-squares problem, we discretize the objective function using mean squared error via sampling and solve the proposed deep least-squares method by standard training algorithms such as stochastic gradient descent. The discretized objective function utilizes only the point-wise information on the sampling points and thus no underlying mesh is required. Doing this circumvents the challenging meshing procedure as well as the numerical integration on the complex interfaces. To improve the computational efficiency for more challenging problems, we further design an adaptive sampling strategy based on the residual of the least-squares function and propose an adaptive algorithm. Finally, we present several numerical experiments in both 2D and 3D to show the flexibility, effectiveness, and accuracy of the proposed deep least-square method for solving interface problems
    corecore